
Formal Derivation of two Parallel Rendering Algorithms

Theoharis Theoharis

Department of Informatics

The University of Athens

Panepistimioupolis ������ Athens� Greece

email� theotheo�di�uoa�gr

Ali E� Abdallah

The University of Reading

Department of Computer Science

Reading� RG� �AY� U�K�

email� A�Abdallah�reading�ac�uk

Abstract This paper presents the formal deriva�

tions of two parallel rendering algorithms from a

high level speci�cation� The initial speci�cation of

the problem is formulated as a functional program�

A calculational approach is used to derive� from

the original speci�cation� two parallel algorithms

expressed as networks of communicating processes

in Hoare�s CSP� Both algorithms exploit pipelined

parallelism in order to achieve e�ciency� The

�rst algorithm is massively parallel but the second

uses a �xed number of processing elements� The

derivation is done in two stages� Firstly� a cal�

culus of function decomposition is used in order

to transform the speci�cation into an instance of

a generic parallel functional form� Secondly� the

generic functional form is re�ned into a collection

of communicating processes in CSP using a formal

re�nement framework based on previous work�

Keywords� parallel rendering� functional program�

ming� program transformation

� Introduction

Computer graphics can be considered as the
process which transforms a three dimensional
model of a scene into a two dimensional ar�
ray of pixel colours� known as the synthetic

image or just image� A typical example is
�ight simulation� where the pilot �ies through
a prede�ned terrain and images representing
the pilot�s current view are rapidly generated�
Another example is architectural walkthrough
where the customer can explore a visual model
of a proposed building� In this section we shall

introduce the essential concepts of computer
graphics and try to formally capture them�

Synthetic image generation �commonly
called computer graphics� has been around for
about �	 years� An increasing amount of image
realism has been achieved in this period mak�
ing increasing demands on the performance
of the supporting computer systems� These
increasing demands have even oustripped the
dramatic rise in processor speeds
 coupled with
the need for real time performance in many
graphics applications this has led to the use of
parallel processing techniques� even from the
very young days of the �eld� In fact it has been
one of the �rst realistic applications of parallel
processing� not only because of this need for
computing power� but also because� as many
researchers have put it� graphics o�ers �embar�
rassing opportunities for parallelism
 ���� ����

In this paper we will concentrate on the
rendering stage of the computer graphics pro�
cess� This stage is the most computationally
expensive� We start by giving a functional for�
malism of the problem and then we system�
atically apply correctness preserving transfor�
mations rules to derive a new functional form
which exhibits a high degree of implicit par�
allelism� Finally� the functional form is re�
�ned into a collection of communicating se�
quential processes described in Hoare�s CSP

notation� Through algebraic program trans�
formations the �nal functional form can be im�
plemented as processes with di�erent physical
con�gurations� Some of these are suitable for
massively parallel machines� �xed pipes of pro�
cesses� systolic designs and FPGAs�



� Notation and Preliminaries

Throughout this paper� we use the functional
notation and calculus developed by Bird and
Meertens ��� �� for specifying algorithmics and
reasoning about them and will use the CSP

notation and its calculus developed by Hoare
���� �� �� for specifying processes and reason�
ing about them� We give a brief summary of
the notation and conventions used in this pa�
per� The reader is advised to consult the above
references for details�

Lists are �nite sequences of values of the
same type� The list concatenation operator is
denoted by �� and the list construction opera�
tor is denoted by�� The elements of an enumer�
ated list are displayed between square brackets
and separated by commas� Functions are usu�
ally de�ned using higher order functions or by
sets of recursive equations� Function compo�
sition is denoted by � � The operator � �pro�
nounced �map
� takes a function on the left
and a list on the right and applies the func�
tion to each element of the list� Informally� we
have�

f � �a�� a�� � � � � a�� � �f�a��� f�a��� � � � � f�an��

The operator � �pronounced �reduce
� takes
an associative binary operator on the left and a
list on the right� It can be informally described
as follows

���� �a�� a�� � � � � an� � a� � a� � � � � � an

��� Algebraic Laws

One important asset of the functional pro�
gramming framework and� in particular� Bird�
Meertens Formalish �BMF� is its richness in
algebraic laws which allow the transformation
of a program from one form to another while
preserving its meaning� Here is a short list of
frequently used algebraic rules which will be
used later in this paper� Historically� the �pro�
motion rules
 are intended to express the idea

that an operation on a compound structure can
be �promoted
 into its components�

map distributivity�

�f � g�� � �f�� � �g��

map promotion�

f� � ��� � ��� � �f���

reduce promotion�

�� � ��� � �� � ��� ��

� Formal Speci�cation

��� Polygonal Model

A number of modeling schemes� such as polyg�
onal modeling� bicubic patches and construc�
tive solid geometry ���� ���� have been pro�
posed over the years� We shall concentrate
on the classic polygon model because of its
widespread acceptance� simplicity and matu�
rity� In this model objects are represented as
sets of �D polygons
 each object is typically
de�ned in its own object coordinate system� In
order to de�ne the polygonal model� we �rst
need to capture some basic concepts� A colour
is encoded as a number in some colour system
such as RGB or CMY ���� ����

colour �� num

Having de�ned a two dimensional ��D� and
a three dimensional ��D� point as�

point�d �� �num�num�
point�d �� �num�num�num�

we can build up the de�nition of a polygonal
model�

vertex �� �point�d� colour�
polygon �� �vertex�
object �� �polygon�
model �� �object�



A graphics model is thus a list of polygonal
objects� Each polygon is a list of vertices and
each vertex is a �D point and an associated
colour which has been determined by a shading
model such as Gouraud or Phong ���� ���� The
above abstraction of a vertex coincides with the
Gouraud model� The colour of each point in
the teapot image is derived from the colour of
the vertices of the polygon in which it lies in the
polygonal model of the teapot� This is achieved
through a given interpolation function icolour�

icolour �� polygon� point�d � colour

Similarly� the depth �from a viewing point� of
each point in the teapot can be derived from
the depth of the vertices of the polygon in
which it lies�

idepth �� polygon� point�d � num

We use point�d in the de�nitions of icolour
and idepth since the point is completely de�
termined from the knowledge that it is copla�
nar with the polygon vertices� Figure � shows
the polygonal model of a teapot and �gure �
shows the �nal image of the teapot from a cer�
tain viewpoint after going through the com�
puter graphics process�

��� Rendering

The rendering stage can be seen as a function
which takes a list of projected polygons and
a background image� say bkg� as inputs and
produces a new image� after rendering its in�
put polygons� as output� An image is a set of
pixels� Each pixel is de�ned as�

pixel �� �point�d� colour� depth�

The initial image either contains the initial val�
ues �background colour� maximum depth� or is
a partly rendered image
 this de�nition allows
us to decouple the rendering of one polygon
from that of another� thus facilitating paral�
lel processing� The renderimage function can
be de�ned using a simpler function� rendpix�
which solves the rendering problem for a single
pixel�

Figure �� Polygonal model of a teapot

Figure �� Rendered image of the teapot from
a viewpoint



renderimage �� model � �pixel� � �pixel�

renderimage m bkg � �rendpix m� � bkg

The rendpix function can be de�ned as fol�
lows�

rendpix �� model � pixel � pixel

rendpix �� x � x
rendpix �g � gs� x � rendstep g �rendpix gs x�

The above recursive de�nition leaves a pixel
unchanged if the poygon list is empty �stopping
case� otherwise it updates the value calculated
for he tail of the polygon list by the head poly�
gon using another function which can easily be
de�ned as�

rendstep �� polygon� pixel � pixel

rendstep g �p� c� d�
� �p� c� d�� if p outside g � d � idepth g p
� �p� icolour g p� idepth g p�� otherwise

where icolour and idepth are functions which
calculate by interpolation the colour and depth
values of polygon g at pixel p respectively� from
the colour and depth values at the vertices of
the polygon�

� Derivation of a Massively

Parallel Solution

By applying the tail recursion unrolling rule�
rendpix can be described as a composition of
several functions
 each of which is an instance
of rendstep that deals with a particular poly�
gon from the list m�

rendpix m � ���� �rendstep �m�

In other words� assuming the model m con�
sists of a list of� say n� polygons �g�� g�� � � � � gn��
then rendpix m can be expressed as a compo�
sition of n functions�

rendstep g� � rendstep g� � � � � rendstep gn

Now by applying the distributivity law of
map over function composition� the rendering

of a whole image� �rendpix m� � can be derived
as a composition of n functions�

�rendpix m� � � ���� ��map � rendstep� �m�

That is� �rendpix �g�� g�� � � � � gn�� � is�

�rendstep g�� � � �rendstep g�� � �� � �rendstep gn� �

The composition of functions can be real�
ized in CSP as piping of processes� Hence� the
above form can be e�ciently implemented as
a pipe of n processes� Each process in the
pipe� MAP �rendstep g�� deals with a particu�
lar polygon from the polygonal list m� It re�
peatedly inputs a pixel from its left neighbour�
update the pixel value �colour and depth� by
taking into account the polygon maintained by
the process� and outputs the new pixel value to
its right neighbour� The whole network is de�
picted in Fig� � and can be consisely expressed
as�

���� ��MAP � rendstep� � �reverse m��

For any function f � the pipe process
MAP �f� re�nes the function f � � By unfold�
ing the CSP de�nition of the process MAP �
the behaviour of each process in the pipe can
be synthesized as follows�

�MAP � rendstep� �g�
� MAP �rendstep g�
� �Z � � ��eot
 � �eot � SKIP

j
�x � ��rendstep g x� � Z�

The above solution e�ectively places the re�
sponsibility for rendering one polygon on each
pipeline stage� Pixels �ow through the pipeline
and take their �nal value upon exit� This is a
massively parallel algorithm� Assuming that
the image to be rendered has k pixels and the
model m has n polygons� the starting sequen�
tial algorithm requires O�n�k� computational
steps but the pipelined version requires only
O�n � k� computational steps� We have thus
arrived at the architecture proposed by Cohen
and Demetrescu ����



PRD�bkg� MAP �rendstep gn� MAP �rendstep g�� MAP �rendstep g��

� � � � � � �

Figure �� Rendering of the background image bkimg by successive polygons

� Transformation to a �xed

length pipe of processes

In practice� the number of processing elements
in a parallel machine is much smaller than n�
the number of polygons in the graphics model�
We will show that using algebraic transforma�
tion� the massively parallel algorithm given in
the previous Section can be transformed to an
e�cient pipelined algorithm with a given �xed
length� say p� Consider a partition function
parts p which partitions the list of polygons m
into exactly p groups of consecutive elements�
The function parts can be speci�ed as follows�

parts �� num� �A� � ��A��
��� �parts p m� � m

That is� parts p m � �m��m�� ���mp� and

m� ��m� �� �� �� mp � m

We have

rendpix m � ���� �rendstep �m�

to transform this to a composition of p func�
tions� we reason as follows

rendpix m
fdef� ofmg

� rendpix �m� �� m��� �� mp�
fdef� of rendpixg

� ���� �rendstep � �m� �� m��� �� mp��
fdistributivity of � over ��g

� ���� ��rendstep �m�� �� �� �� �rendstep �mp��
freduction promotiong

� ����� �rendstep �m��� � ������� �rendstep �mp��
fdef� of rendpixg

� �rendpix m�� � �� � �rendpix mp�
fdef� of ���� g

� ���� �rendpix m�� � � � � rendpix mp�
fdef� of � g

� ���� �rendpix � �m��m�� ���mp��
fdef� of parts pg

� ���� �rendpix � �parts p m��

We can generalize this to renderimage by
appealing to the distributivity law of map over
function composition� hence� we reason as fol�
lows

renderimage m
fdef� of renderimageg

� �rendpix m� �
fprevious result of rendpix mg

� ����� �rendpix � �parts p m��� �
funfolding de�nitionsg

� ��rendpix m�� � �� � �rendpix mp�� �
fdistributivity of � over �g

� ��rendpix m�� � � � �� � ��rendpix mp� � �
fdef� of renderimageg

� �renderimage m�� � �� � �renderimage mp�
ffolding de�nitionsg

� ���� �renderimage � �parts p m��



PRD�bkg� MAP �rendpix mp� MAP �rendpix m�� MAP �rendpix m��

� � � � � � �

Figure �� Fixed length pipeline for image rendering

this composition of functions can be system�
atically transformed into a pipelined network
of p communicating processes as illustrated in
Fig� �
 each stage in the pipeline is an in�
stance of a single pipe process which re�nes the
function �rendpix gs� � � In other words� this
process takes a background image on its input
channel� one pixel at a time� and produces the
rendering of that image� one pixel at a time�
according to the partition of the polygons it is
holding� We have�

renderimage gs � �rendpix gs� �

as we have seen� this function can be re�ned
into the processMAP �rendpix gs�� Therefore�
the whole algorithmic expression can be trans�
formed into the following pipe�

���� ��MAP � rendpix� � �reverse �parts p m��

By unfolding the CSP de�nition of the pro�
cess MAP � the behaviour of each process in
the pipe can be synthesized as follows�

�MAP � rendpix� �gs�
� MAP �rendpix gs�
� �Z � � ��eot
 � �eot � SKIP

j
�x � ��rendpix gs x� � Z�

� Conclusion

Starting from a formal functional speci�ca�
tion of the computationally expensive graphics
rendering phase� we have derived using strict
mathematical transformations� two parallel al�
gorithms� Both algorithms exploit pipelined
parallelism in order to achieve e�ciency� The

�rst algorithm is massively parallel but the sec�
ond uses a �xed number of processing elements�
Due to the nature of the transformations� we
can ensure that the parallel implementations
satisfy the original speci�cation and we can
also reason about them using well known math�
ematical properties� Apart from providing a
correctness proof and semantics consolidation�
this method is very useful as a concise and clear
communication medium for algorithm design�
ers and engineers� We plan to use the same
techniques to derive other parallel implemen�
tations� with di�erent physical process con�g�
urations such as trees and meshes� from the
original speci�cation of this problem�

The transformational approach used in this
paper for deriving recon�gurable parallel algo�
rithms is based on earlier work by the authors
��� �� �� ��� It has bene�ted from related work
on transformational programming and paral�
lelization by several colleagues ��� �� ��� Re�
lated work on formal methods for describing
a framework for the speci�cation of modu�
lar graphics systems in Z appeared in ��� ����
There is also a formal Z speci�cation of a small
example from GKS in ����� The methods used
are non�procedural but parallelism is not dis�
cussed� Parallel rendering algorithms are dis�
cussed in ��� �	� ��� ��� ����

Acknowledgements

The authors would like to thank The British

Council for �nancially supporting their joint
research programme between The University
of Reading and The University of Athens� The
second author is supported by The University
of Athens research grant �	��������



References

��� A� E� Abdallah� Derivation of Parallel
Algorithms from Functional Speci�cations
to CSP Processes� in� Bernhard M�oller�
ed�� Mathematics of Program Construction�
LNCS ���� �Springer Verlag� ����� ������

��� A� E� Abdallah� Synthesis of Massively
Pipelined Algorithms for List Manipula�
tion� in L� Bouge and P� Fraigniaud and
A� Mignotte and Y� Robert �eds�� Proceed�
ings of the European Conference on Par�

allel Processing� EuroPar���� LNCS �����
�Springer Verlag� ������ pp ������	�

��� A� E� Abdallah� and T� Theoharis� Syn�
thesis of Massively Pipelined Algorithms
from Recursive Functional Programs� in�
K� Li� T�S� Abdelrahman� E� Luque� eds��
Proceedings of the Eighth IASTED Inter�
national Conference on Parallel and Dis�
tributed Computing and Systems� Chicago�
USA� �IASTED�ACTA press� October
������ �		��	��

��� A� E� Abdallah� and T� Theoharis� Deriva�
tion of E�cient Parallel Algorithms on
a Ring of Processors� in� E� Luque�
eds�� Proceedings of the European Con�
ference on Parallel and Distributed Com�
puting and Systems� Barcelona� Spain�
�IASTED�ACTA press� June ������ ����
����

��� D�B� Arnold� D�A� Duce� G�J� Reynolds�
An Approach to the Formal Speci�cation
of Con�gurable Models of Graphics Sys�
tems� Eurographics ��� Conference proceed�

ings� �North�Holland� ������ pp� ��������

��� R� S� Bird� An Introduction to the The�
ory of Lists� in M� Broy� ed�� Logic of Pro�

gramming and Calculi of Discreet Design�
�Springer� Berlin� ����� �����

��� R� S� Bird� and P� Wadler� Introduction to

Functional Programming� � Prentice�Hall�
������

��� D� Cohen� and S� Demetrescu� A VLSI Ap�

proach to Computer Image Generation� In�
formation Sciences Institute� �University of
Southern California� ������

��� M� Cole� Algorithmic Skeletons� Structured

Management of Parallel Computation �Pit�
man� ������

��	� M� Cox� and P� Hanrahan� A Distributed
Snooping Algorithm for Pixel Merging�
IEEE Parallel and Distributed Technology

Summer ����� �	����

���� D�A� Duce� F� Paterno� A Formal Speci��
cation of a Graphics System in the Frame�
work of the Computer Graphics Reference
Model� Computer Graphics Forum� ������
�Springer� ������ ���	�

���� D�A�Duce� E�V�C� Fielding and L�S� Mar�
shall� Formal Speci�cation of a Small Ex�
ample from GKS� ACM Transactions on

Graphics� ����� �ACM press ������ ��	�
����

���� J� Foley et al� Introduction to Computer

Graphics �Addison Wesley� ������

���� C� A� R� Hoare� Communicating Sequen�

tial Processes� �Prentice�Hall� ������

���� T�Y� Lee� et al� Image Composition
Schemes for Sort�Last Polygon Render�
ing on �D Mesh Multicomputers� IEEE

Transactions on Visualization and Com�

puter Graphics � ��� ������ �	������

���� S� Molnar� J� Eyles� J� Poulton� Pix�
elFlow� High Speed Rendering Using Image
Composition� SIGGRAPH ���	� �ACM
Press� ������ pp���������

���� T� Theoharis� Algorithms for Parallel

Polygon Rendering� LNCS ���� �Springer
Verlag� ������

���� A�Watt� and M� Watt� Advanced Anima�

tion and Rendering Techniques� �Addison
Wesley� ������



���� A� Watt� and F� Policarpo The Computer

Image� �Addison Wesley� ������


