
Parallel Computing 14 (1990) 229-233
North-Holland

Short Communication

Implementation of matrix multiplication
on the T-RACK

T. THEOHARIS
St Catharine's College, Uniuersity of Cambridge, Cambridge, UK

J.J. MODI
Department of Applied Mathematics and Theoretical Physics, Uniuerstry of Cambridge, Cambridge, UK

Received June 1989
Revised October 1989

Abstract. It turns out to be advantageous to partition matrices into blocks for multiplication on the T-RACK,
which is a MIMD system consisting of 64 floating-point transputers with partially re-configurable linkage.

Keywords. Linear algebra, matrix multiplication, MIMD systems, transputers, performance results.

l. Introduction

The T-RACK [1], which is designed to simulate novel parallel architectures, consists of 64
32-bit floating-point transputers, which may be interconnected by a combination of fixed and
program-controlled re-configurable links. This permits a variety of topologies to be configured
in hardware, and thus renders the system adaptable to a wide range of applications. A brief
discussion of the system is presented in Section 2.

Let A and B be matrices of size mx. n and n xp respectively. Formation of the matrix
product C: AB with elements

c , , : l a , o b o , I < i < m , 7 < i 4 p

requires mnp products to be calculated. A number of different strategies for forming these
products are amenable to implementation on a parallel machine with, say, N processors, and it
is useful to distinguish three cases (a) N>mnp, (b) mnp)-N)-max(mn, np, mp), (c) N<
max(mn, np, mp).

In case (a) all multiplications can be performed in parallel in a single multiplication step, but

llogrnl addition steps are needed.
For case (b) it is possible to perform mp, mn or np multiplications in parallel, and we

usually associate the outer-product algorithm with the case min(m, n, p): n, the middle-prod-
ucr algorithm by rows with the case min(z, n, p): m, and the middle-product algorithm by
columns with the case min(lz, n, p): p.

0167-8791/n/$03.50 o 1990 - Elsevier Science Publishers B.V. (North-Holland)

230 T. Theoharis, J.J. Modi / Matrix multiplication on the T-MCK

For case (c) the matrices need to be partitioned into smaller blocks, where each block is
dealt with in parallel; thus, for example, the matrices A and B and the product may be
partitioned as follows:

where each product on the right-hand side is computed in parallel. This technique is particu-
larly suitable for the T-RACK (see below). Further details on other techniques may be flund in
various references; see for example [3] or [2].

2. The architecture of the T-RACK

Sixteen cards, each containing four transputers, are placed in a rack. Each transputer holds 1
Mbyte of external dynamic random access memory (100 ns access time), has pro""rro, speed of
l0 Mips, and possesses four serial communication links operating at 2O Mbiis/second. if th"r"
l inks are labelled 0, 1,2 and 3 and the transputers as 0,...,63, then the lst l ink of the kth
transputer is connected to the Oth link of the (k + l)th transputer (the first and last transputers
are connected via the interface card). Thus there is a hamiltonian path connecting alt O+
transputers. In addition the 2nd and 3rd links are connected to two 7l8xl2g crossbar
switchboards, which may provide long distance communication between any two transputers.
The system is front-ended with a SUN 3/l7O colour workstation, and communication between
the T-RACK and the SUN is via transputer links to/ftom a transputer based interface card
which is accessed through the VME-bus in the SUN (see Fig. r). The primary funcrion of the
control card is to set up the switch cards to the required configuration; itt" control card
monitors the transputers via the monitoring bus, as indicated in Fig. 1. The system may be run
in any programming environment containing an OCCAM 2 compiler on any network of
transputers. Furthermore the system is modular, and multiple T-RACK's can easily be
configured.

ln. Arr l lnr , , , r l : I ArrBrr+ At2B2t ArrBn+ AnBz2f
lAn ArrJLB' Brr l lArrBr, + A2zB21 AzrBrr+ A22B22l

Fig. l. Overall T-RACK strucrure.

T. Theoharis, J.J. Modi / Matrix multiplication on the T-MCK

3. Implementation and results

3.1. On block multiplication

The major cost factors in time are computation and communication. Blocks are multiplied in
the same manner as matrices, and thus the computational cost of block multiplication is O(b3).
assuming b x b blocks. The communication cost involved in the transmission of a block from
one transputer to another is O(b2), i.e. proportional to the number of elements in the block.

The advantage of partitioning a matrix into blocks compared with the other methods
mentioned in the introduction, is that the ratio of the computation over the communication
cost is greater than the corresponding figure for the other methods. It is therefore a more
efficient way of distributing the matrices among the transputers. Since the computation cost is
an order of magnitude greater than the communication cost, it also follows that there will be a
critical block size above which it will be computationally cheaper to perform matrix multiplica-
tion by distributing the matrices among the transputers in blocks rather than computing the
product on a single transputer. Furthermore, the larger the size of the matrices, the greater the
number of block products, and hence the greater the number of transputers that can be usefully
employed for the task. In the sequel we shall only consider the implementation of the block
partitioning method. A table of experimental timing results for this method based on the T800
transputer is presented in Section 3.3 in support of the above claims.

3.2. Description of the implementation

The mXn matrix A and the nxp matrix B are partit ioned into (m+p)n/b2 blocks of
b x b elements; the blocks are transmitted to the transputers which we shall refer to as
multipliers (m, n and p are assumed to be multiples of b). The multipliers are linearly
connected using the hardwired transputer links; each of them receives the blocks of A and B
from its left neighbour and passes them on to its right neighbour keeping one block of each of
A and B. The number of multipliers needed ts mnp/b3, and this number can be varied by
changing the block size b. For i: 0,...,mnp/b3 - l. multiplier i keeps blocks

(i olv np/bz, r REM n/b) ot A

and

(i neu n/b, (i Drv n/b) n-EM p/b) ot B,

where DIV indicates integer division and REM the remainder operator. Blocks are indexed in
the same way as matrix elements (row, column). Each of the multipliers then multiplies its local
blocks of A and,B. The multipliers are then partitioned into mp/b2 contiguous groups of n/b
multipliers each and the product blocks of each group are summed together into the "leftmost"
transputer; this can be done in [og, n/bl block addition steps. The resulting blocks, which
reside in the "leftmost" transputer of each group, form the product of A and B and are
transmitted to the transputer residing on the interface card (Fig. 1).

3.3. Results

In order to demonstrate experimentally our assertion (see Section 3.1) that the larger the
matrices to be multiplied the larger the number of processors that can be usefully employed
using the block multiplication technique, we timed the multiplication of a number of matrices
of varying sizes on 1, 8 and 64 T800 transputers. The results provide an indication of the
speedup as well as the absolute speed that can be achieved when this technique is used on

232

Table 1
Matrix multiplication times on the T-RACK

T. Theoharis, J.J. Modi / Matrix multiplication on the T-RACK

Matrix size

m (: n : p)

Block size (b) Time (ms)

8 T800's 64 T800's r T800 8 T800's 64 T800's

4
8

1 6
t z

64
128
2s6

z

4
8

1 6

32
64

128

2.9
4.5

10.9
39.4

779.4
960.2

5959.7

I

z

4
8

1 6
32
64

0.9
7

54.5
430.7

3458.5
27649.4

220991.4

0.9
2 .8

13.4
82.9

584.4
4380.4

33802.6

transputers. For simplicity we have assumed that m:n:p. In Table I we list matrix sizes
against time required for multiplication on 1, 8 and 64 transputers; the matrices consist of
32-bit real numbers.

In the single-transputer implementation, no communication is involved because the matrices
to be multiplied as well as the result are stored within the local memory of the single transputer.
In the case of the 8 and 64 transputers, the matrices are partitioned into the appropriate
number of blocks by the transputer of the interface card and then communicated to the
transputer multipliers; this communication time (i.e. the distribution of the operand blocks to
the multipliers as well as the collection of the result blocks by the transputer of the interface
card) is taken into account in the above timing figures.

It is seen that for very small matrix sizes (up to 4 x 4) the cost of the communication is not
outweighed by the gains from distributing the computation, and the single-transputer imple-
mentation is at least as fast as the 8- or 64- transputer implementations. Somewhere between
the matrix sizes of 8 X 8 and 16 X 16, the 64-transputer implementation becomes faster than
that with 8 transputers. The speedup of the multi-transputer implementations over the single
transputer implementation is monotonically increasing with matrix size because the computa-
tional complexity of block multiplication increases more rapidly than the number of elements
in the block (see Section 3.1). For the 64-transputer implementation the computation time for
256 x 256 matrices is 6 seconds, and this represents a speedup of 37 over the single-transputer
implementation. The substantial reuse of data involved in block multiplication makes this
method advantageous over the other partitioning methods mentioned in the introduction, for
coarse grain parallel processors with (relatively) slow communication links, such as the
transputer.

In the implementation of block communication we had the following options:
(a) whether to use buffering, and
(b) to choose the optimal slice size.

The use of buffering enables more than one transputer link to be simultaneously active (when
data is being transferred through a transputer) but requires a considerable setup time. We
found that the use of buffering provided a marginal performance gain. The size of the
communicated slices could range between one matrix element and a whole block; the smaller
the slice size the smaller the synchronisation delays but the larger the number of communica-
tion setups. We experimented with slices of sizes ranging from one element (4 bytes) to 256
elements and found that the larger the slice size the better (within the range considered).
However the performance gains were inversely proportional to the slice size.

T. Theoharis, J.J Modi / Matrix muhiplication on the T-RACK

References

[1] P Capon, J. Gurd and A. Knowles, Parsifal: a parallel simulation facility, in IEEE Colloquium on the TransPuter

Application & Case Studies (1986).

t2l W.M. Gentleman, Some complexity results for matrix multiplication on parallel processors, J ACM 25 (1) (1978)

1 1 2 - 1 1 5 .

[3] J.J Modi, Parallel Algorithms and Matrix Computations (Oxford University Press, Oxford, 1988)

