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Abstract: In this article a dual scheme for compression and restoration of sequentially 

transmitted images over Wireless Sensor Networks (WSN) is presented. Nowadays such image 

based applications have significantly increased and are characterized by the need to transfer high 

volumes of multimedia data while exhibiting real time synchronization. Depending on the type of 

wireless channel and communication protocol adopted, during data transfer, a considerable 

number of data packets may fail to reach the destination target, with a corresponding direct effect 

on the received image quality. This loss of valuable information until now has been addressed by 

retransmission quality of service schemes. However, this approach increases the energy 

consumption along with the probability of congestion occurrence due to the rise of traffic load. 

This article proposes a dual transmission scheme for multimedia networks that aims to decrease 

the overall traffic load introduced by the retransmission schemes, while performing image 

restoration resulting from lost data packets, at the receiver side. The proposed novel dual scheme 

is based on: a) the Quad Tree Decomposition (QTD) algorithm that is adopted for compression of 

e image data to be transmitted by clustering the image in sets of variable size and of similar type 

of color information, and b) on the fast image inpainting algorithm to restore the effect of the 

missing data packets by reconstructing its missing portions from the surrounding information. 



The overall proposed scheme has been applied in multiple experimental studies that prove its 

efficacy 

Keywords: Wireless Sensor Networks; Quad Tree decomposition; Image Inpainting; Wireless 

Multimedia Sensor Networks. 

 

1 Introduction 

Recent technological advances have enabled the inexpensive development of sophisticated 

wireless sensor nodes which have the ability to perform sensing, processing, communication and 

actuation tasks. A typical sensor node of this kind is a small sized device which consists of one or 

more sensors, a data processor, a memory unit, a power supply, a transceiver and possibly an 

actuator [1-3]. 

A sensor node, in accordance with the sensing units that it incorporates, can measure 

electrical, mechanical, thermal, magnetic, biological, chemical or optical features of the physical 

phenomena taking place at its surroundings. Through the collaborative use of a large number of 

sensor nodes, a WSN is able to perform concurrent data acquisition of ambient conditions at 

various locations of interest spread over wide areas. This is the reason why WSNs, based on the 

sensing capabilities of their nodes, are nowadays used in an ever growing number of applications 

including surveillance and reconnaissance, environment and habitat monitoring, fire detection, 

inventory control, biological and biomedical applications, traffic control, agriculture, energy 

management, machine failure diagnosis, monitoring and handling of emergency situations, as 

well as battlefield monitoring and control [4-6]. 

In most cases, sensor nodes are deployed over wide areas and transmit data to a sink node, 

referred as the base station. In the most common scenarios, the distance between a source node 

and a destination node, or the base station, may exceed the range of the transmission capabilities 

of the transmitter. Therefore, relaying is required via intermediary sensor nodes. That is why 

sensor nodes not only collect, process and transmit the sensed data, but are also responsible for 



forwarding received data from other nodes of the network. Thus, the operation of a WSN is 

correlated with the transmission of large volumes of data. 

However, most of the energy expenditure of a sensor node takes place during its wireless 

communication and decreases whilst sensing and data processing [7]. Thus, the presence of heavy 

traffic load within a WSN causes rapid depletion of a node’s energy reserves, which are, by 

principle of design, limited. Moreover, the presence of increased traffic load raises the probability 

of congestion occurrence. High congestion causes the number of packet losses to increase. In 

order to prevent data recipients from losing valuable information due to failed transmissions, 

retransmissions can be activated. Nevertheless, data retransmissions result in a considerable 

increase to the traffic load and subsequently, the network’s energy consumption and congestion. 

Nowadays numerous novel applications have been developed for use in Wireless Multimedia 

Sensor Networks (WMSNs) [8]. These networks are actually WSNs equipped with sensor nodes 

capable of sensing, processing and transmitting multimedia data. In image based applications, the 

volumes of data that have to be transmitted are even greater than in most other applications of 

WSNs. Therefore, in such applications the need for data traffic constriction becomes even more 

evident. In order to compensate for errors and packet losses during data transmission in WMSNs, 

techniques improving the perceptual quality of the transmitted multimedia content are employed 

in the Transport and Application Layers of the network [9]. Such erroneous behavior is mainly 

attributed to multi-path fading and interference. Popular compensative techniques include 

Forward Error Correction (FEC) and Automatic Repeat Request (ARQ), which both induce 

limitations to the transmission and energy consumption efficiency of a WMSN. ARQ burdens the 

allocated bandwidth by requesting retransmission of lost data packets while the decoding 

complexity of FEC requires additional computational resources of a node in a WMSN, as it has to 

be built-in to the transport layer. In addition, multimedia content requires extended functionality 

of the application layer of the WMSN due to the nature of the transmitted data, especially 



concerning video streaming. Additional functionality includes application-specific source coding 

techniques and collaboration of network nodes for in-network multimedia processing. 

This article proposes a novel scheme for transmitting multimedia content over a WSN by 

attempting to render invasive techniques to the transport and application layer obsolete. The 

proposed approach is experimentally applied to image transmission and is characterized by its 

simplicity, as it is network-independent and does not rely on node functionality enhancement.  

The proposed scheme comprises of two fundamental tasks, the first being the coding of the 

images to be transmitted by utilization of the QTD algorithm. QTD compresses the volume of 

image data by clustering the image in sets of variable size and of similar type of color 

information,which in turn leads to a significant reduction of the volume of transmitted data The 

second task performed is the application of a fast inpainting algorithm over the received images 

in order to restore, based on existing surrounding information, the damaged or missing image 

portions. The method aims to optimally compensate for the loss of information, caused by failed 

data transmissions, by circumvention of retransmissions, while retaining basic node functionality. 

The tasks described are applied by the transmitter and receiver base stations, which in principle 

are equipped with extended computational resources with respect to nodes of a WSN.  

Although both QTD and inpainting algorithms are generally utilized for the coding and 

restoration of images, they have not been so far jointly applied in image based applications of 

WSNs. Thus, the novelty of the proposed scheme lies on the combined application of lightweight 

compression techniques and fast inpainting methods, in the sequential image transmission of 

images over WSNs, in order to achieve the reception of images having adequately good quality, 

with considerably reduced communication cost. Finally, it should be noted that according to the 

authors’ of this article best knowledge, this is the first experimental application of an inpainting 

algorithm for image restoration in the field of WSNs. 

The remainder of this article is organized as follows. In Section 2 the QTD method is 

described while in Section 3, the state of the art in inpainting algorithms is presented. In Section 4 



a detailed description of the methods adopted in the proposed scheme is provided. The 

architecture of the proposed experimental system and corresponding results, that prove the 

efficacy of the proposed scheme, are presented in Section 5. Finally, Section 6 concludes the 

article. 

2 Image Compression via Quad Tree Decomposition Method 

Most image coding methods are based on techniques of image decomposition. Typically, a 

natural image consists of several regions that are attributed by local similarity and many others 

that have extensively varying content. Therefore, it is wise when coding such an image to allocate 

less data for homogeneous neighborhood decomposition and more data for areas containing edges 

and texture. In the proposed scheme, QTD is utilized. QTD is an image segmentation method 

generally used for hierarchical decomposition. The key behind hierarchical decomposition is to 

divide an image into sufficiently homogeneous areas, the levels of which can be compactly 

encoded. In the corresponding bibliography, there are several image compression algorithms, 

with the most popular being the Discrete Cosine Transform, Fractal compression and the Discrete 

Wavelet Transform. The aforementioned techniques tend to be mathematically complex, except 

from the QTD algorithm. QTD has been widely utilized not for its low–complexity but due to its 

powerful compression potential as well [10-11]. 

These attributes constitute the QTD to be an ideal candidate for application in image based 

compression applications over WMSNs. In these applications most images are stored in raster 

format. Hence, any access to a raster image is sequential, starting from the top left–most pixel and 

ending at the bottom right–most pixel. The QTD can be applied in two alternative approaches 

[11]. The first is the Bottom–Up decomposition, where each image is initially segmented into 

blocks of the minimum possible size. In sequel, every four adjacent blocks of equal size are 

joined together if the new joint block is homogeneous. The overall procedure is repeated until no 

other blocks can be merged. The second implementation approach is the Top–Down 

decomposition, where each image is initially divided into four blocks of equal size. Next, each of 



the newly generated blocks recursively splits into four new blocks if it is inhomogeneous and its 

size is greater than the minimum possible block size. In general, in terms of processing speed, the 

Top–Down QTD is considered to outperform Bottom–Up QTD for images which are either big or 

smooth while the latter performs better for images which have either small size or extensive 

textural features [11]. 

The image compression performed in this work, was based on the Top–Down QTD method. 

Thus, each image can be divided in half along both axes, all the way down to pixel level. This 

recursive subdividing of blocks allows for the image data to be organized into groups, in 

accordance with the neighboring blocks. Specifically, every subdivision exists as one of four 

neighboring blocks, which is actually comparable to having a tree–like structure, where the root 

of the tree is the entire image recursively divaricating into four branches, until its leaves are 

pixels. In this manner, a quad tree is a tree with nodes which are either leaves (pixels) or have 

four children. As a result, each block is either completely a single color block or consists of four 

smaller sub–blocks. An example of a product of a QTD process is presented in Fig. 1. 

 

 
 
Fig. 1 QTD example in the form of a multilayer set of blocks and a corresponding tree structure 
 



 
The tree like evaluation of an image enables the removal of the unnecessary leaves and 

branches of the tree, which result in the reduction of the QTD representation size. This could be 

achieved by checking every individual block against a criterion of homogeneity. In case this 

criterion is satisfied, the corresponding block is not divided any further. However, if the 

homogeneity criterion is not satisfied, the block is further divided into another four blocks. The 

process is executed iteratively until each block satisfies the homogeneity criterion [12-13], 

expressed as: 
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In this formula, MX4 represents the maximum value of the four leaves of a branch, while MN4 

expresses the minimum value found on this branch, and AVG4 symbolizes the linear average of 

the values found on this specific branch. At the right part of Eq.(1), which represents the 

threshold for removing the branches, R is the decomposition factor, expressing the degree of 

compression. Parameter L refers to a scaling factor which corresponds to the size of image region. 

For instance, L is equal to 1 for simple pixels 2 for regions of size 2 x 2s and so on. Moreover, γ 

represents gamma correction. Finally, q denotes the ratio of the region to image size. For 

instance, when γ gets the commonly used value 2 and q is equal to 128, the quantity inside the 

parenthesis simplifies to 1/128. Thus, for a pixel array derived from an image of size 256 x 256, it 

represents 1/128 of the image size. This means that there are 128 pixel arrays in a 256 x 256 sized 

image. If a leaf is removed, a quadrant will be represented by the average of the pixels it 

contained prior to pruning. The adoption of the homogeneity criterion expressed by Eq.(1), leads 

to the formation of images of reduced size created through QTD, similar to the QTD partitioned 

image illustrated in Fig. 2. 

 



 

 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 Example of an image formation through QTD based on the homogeneity criterion 
 

3 Image restoration through inpainting techniques 

Various methods have been proposed for restoring and reconstructing images. The two most 

popular categories of these methods are namely texture synthesis and image inpainting. Image 

inpainting is the process of modifying an image by reconstructing its damaged or missing 

portions. Such techniques have been applied manually for centuries while popular texture 

synthesis techniques aim to reproduce large areas of missing pixels from images by extracting 

statistical features from textures. In this way, texture synthesis algorithms are able to repair 

textured regions of an image with high quality. However, this is not the case when dealing with 

regions containing structural information. 

The approach proposed in this article focuses on preserving structural image information, 

since this kind of information is of greater importance in WSN applications, where recovering 

packet losses resulting from image transmission requires a more subtle and natural approach. 

Thus, the image restoration process is based on a variation of the original inpainting algorithm. 
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Nowadays, there are a wide range of algorithms developed for digital image inpainting, 

which at some extent replicate the basic techniques used by restorers. The main differences 

concern mathematical foundation, quality of results, topology dependence, speed of execution 

and the type of application. Until now, the most popular inpainting algorithms were based on: a) 

isophotes for joining points of equal light [14-15] b) Euler-Lagrange equation along with 

anisotropic diffusion (Total Variational) [16], c) Curvature–Driven Diffusion [17], d) partial 

differential equations (PDEs) [18-19], e) edge identification [20], f) global approach deriving 

from the global heat principle and its laws [21]. 

Recently the results from [18] have been extended in [22] by deriving a third order PDE that 

performs inpainting. The inpainting problem in this work is perceived as a case of image 

interpolation and level lines are propagated by expression in terms of local neighborhoods. Using 

the Taylor expansion, a third order PDE is derived, which optimally ensures the continuation of 

level lines. The method outperforms previous work in terms of both accuracy and contrast 

invariance. However, the execution of the algorithm is more time consuming. 

An alternative and faster approach has been presented in [23], where the authors have 

proposed a method that incorporates the inpainting approach for completing missing regions in 

video sequences of complex dynamic scenes. Completion is achieved by an optimization of a 

global visual coherence function. The method fills in missing regions of the video sequence by 

using similar space–time patches extrapolated by the video sequence. In order to measure 

similarity among space–time patches the Sum of Squared Differences measure is adopted and 

applied to space–time points that are characterized by the RGB color coefficients and vertical as 

well as horizontal motion coefficients,thus comprising a 5-D representation for each point. To 

further optimize the algorithm a confidence measure is incorporated and the iterative process 

performs in multiple scales using spatio–temporal pyramids. The proposed method performs 

impressively for video–completion and can also be adapted to image completion by eliminating 



the temporal extent. The algorithm has been incorporated in the presented work as it outfits the 

need of a fast restoration scheme, for sequential images transmitted over a WSN. 

The procedure proposed in this article for the image inpainting of the transmitted over WSNs 

compressed images is based on a fusion of the aforementioned methods proposed by Bertalmio 

[18] and Wexler [23]. It aims at the achievement of high quality of restoration along with high 

speed of execution. More specifically, the use of the PDEs [17] aids in preserving the image’s 

structural information while the global visual coherence optimization defined in [23] prevents 

solutions with local inconsistency to be selected as viable candidates. 

Let I0(i,j) be our discrete gray level image and Ω the region to be inpainted, where (i,j) are 

the pixel coordinates. As the algorithm execution progresses, a sequence of images I(i,j,n), where 

I(i,j,0) = I0(i,j) and limn→∞I(i,j,n) = IR(i,j), are produced at each iteration n. This procedure 

ultimately results at the final inpainted image IR(i,j). At any step of its execution the algorithm can 

be generally described by 

,ାଵሺ݅ܫ                                               ݆ሻ ൌ ,ሺ݅ܫ ݆ሻ  ௧ܫݐ∆
ሺ݅, ݆ሻ, ∀ሺ݅, ݆ሻ ∈  ሺ2ሻ                                          ߗ

where n corresponds to the current step of execution, Δt denotes the rate of improvement and 

௧ܫ
ሺ݅, ݆ሻ  represents the update at each step. 

Let ∂Ω denote the boundary of the region to be inpainted. The goal of the proposed approach 

is to smoothly propagate the missing information into Ω. In order to achieve the above, the 

propagation direction ሬܰሬԦሺ݅, ݆ሻ and the information to be propagated ܮሺ݅, ݆ሻ must be computed. 

These two coefficients define ܫ௧
ሺ݅, ݆ሻ as: 

௧ܫ
ሺ݅, ݆ሻ ൌ ,തതതതതሺ݅ܮߜ ݆ሻ ∙ ഥܰሺ݅, ݆ሻ                                          (3)                                

where ܮߜሬሬሬሬሬሬԦሺ݅, ݆ሻ denotes a measure of change in the information ܮሺ݅, ݆ሻ. 



In order to achieve smoothness in the resulting image, which statistically balances the pixel 

intensity over a given region providing a more visually coherent result to a simple 

implementation of the discrete Laplacian is used for ܮሺ݅, ݆ሻ:        

,ሺ݅ܮ                                                        ݆ሻ ൌ ௫௫ܫ
 ሺ݅, ݆ሻ  ௬௬ܫ

 ሺ݅, ݆ሻ                                            (4)          

The discrete Laplacian in (4) is incorporated to smooth the resulting image as the reconstructed 

region, if not manipulated as such, will present sharpness, especially around the area of the 

boundary pixels of the missing region. Smoothness statistically balances the pixel intensity over a 

given region and provides results which are not perceptually visible. 

For the direction coefficient ሬܰሬԦሺ݅, ݆ሻ, the direction of the smallest spatial change ܫୄߘሺ݅, ݆ሻ is 

used as proposed in [18].In addition to the procedure described above an anisotropic diffusion 

technique is iteratively applied at every few steps of the execution of the inpainting algorithm to 

ensure the correct evolution of the direction coefficient. Anisotropic diffusion reduces noise  in 

the applied region. As the in‐painting algorithm progresses, driving towards the inner area of a 

missing region, the noise  introduced  increases as  less original  information are available for the 

specific area, resulting  in deviance of the direction coefficient. Such  information  is propagated 

from  the  reconstructed pixels  in a  inwards approach and  requires noise  reduction  in order  to 

retain the algorithm efficiency unaffected or in these cases, less affected. 

The discrete 2D anisotropic diffusion utilized in the proposed algorithm incorporates a 3x3 

pixel neighborhood to contribute information and is described by: 
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In order to increase the execution speed of the digital inpainting algorithm a multi-scale 

resolution approach is adopted. An iterative process over multiple scales is implemented. Each 



level contains ¼th of the pixels of the higher scale image, which is also the case for the missing 

region Ω. 

The iterative process begins at the lower scale applying the inpainting algorithm. As the 

execution progresses, the direction of ሬܰሬԦሺ݅, ݆ሻ is propagated to the next level along with an 

estimation of ܮሺ݅, ݆ሻ which acts as an initialization for the missing pixels of the image, resulting 

in a faster convergence of the algorithm. The algorithm is executed given the depth N of the 

multi-scale resolution and a maximum of M iterations of the inpainting algorithm. Moreover, the 

global visual coherence optimization proposed by Wexler [23] is incorporated to determine 

algorithm convergence and the SSD of the color (or gray-level) information is adopted to measure 

the change of information in the image from step ܫ to  ܫାଵ. If the result is below a predefined 

threshold, the inpainting algorithm completes its execution providing the output to higher 

execution level until the initial resolution is reached. In the proposed scheme: a) the advantages of 

the original inpainting algorithm with respect to information propagation are maintained, b) a 

global metric is adopted for quality measurement, and c) convergence is achieved rapidly by 

applying a multi–scale resolution scheme, which makes the method ideal for near real-time 

performance, a factor that is of paramount importance when dealing with image based 

applications over WSNs. 

The overall proposed congestion-aware control scheme is illustrated in Fig. 3. In this figure 

it is shown that the images captured from a camera are coded according to QTD prior to being 

transmitted over the WSN. The selection of the acquiring source (digital camera or digital video 

equipment) and the image acquisition settings are of paramount importance for the overall 

application. Images of higher analysis will require greater transmission times, while images of 

low analysis, will speed up the transmission scheme but will reduce significantly the quality of 

the reconstructed images. Thus for every application, a compensation should be made among 

transmission time and reconstructed image quality. At the receiver side, the streamed data packets 



received are Quad Tree composed. The QTD algorithm for the decomposition and the 

reconstruction of the transmitted images, can be implemented in the node level by attaching the 

WSN-node to a microcontroller or to an embedded pc. Due to probable losses of data packets, 

which contain information for specific areas of the images transmitted, the received images may 

contain black-colored areas. In these cases, black-colored areas are identified through a masking 

operation on the received image and the inpainting algorithm for image restoration is applied in 

order to restore the missing areas. 

 

 

Fig. 3 Overall System Architecture for the reconfigurable transmission of images over a 
congested WSN 

 

4 Experimental results 
 

For the experimental verification of the proposed scheme a Zigbee–WSN has been 

established, consisting of one coordinator node, three routers and one end device. The coordinator 

is responsible for establishing the WSN network and transmitting the decomposed images as data 

packets to the Zigbee network [24-26]. Moreover, the routers are responsible for establishing 

connections within the WSN network in order to forward the decomposed image data packets 

(forwarders). The end device acts as the interface of the network to the computer at the receiver 

side. Finally, the image inpainting algorithm has been also executed on this computer. 

For the presented experimental results, the benchmark image of an 8–bit gray scale image of 

Lenna with an analysis of 256x256 pixels has been selected. This image has been also utilized to 



produce sequential transmitted images, in order to simplify the reader’s comprehension towards 

the variations in the quality of the received image, based on different QTDs, without a loss of the 

generality for the presented approach. 

The test scenarios include the application of different decomposition factors on the same 

image and the sequential examination of: a) the effect of the packet losses on the same image, and 

b) the capabilities of the image inpainting algorithm. The network coordinator that is presented in 

Fig. 4 was constructed using a MaxStream XBee XB24BZigbee Modem [27] with a XBEE USB 

connector board from Sparkfun.  

 

Fig. 4. The designed and implemented coordinator node of the utilized WSN 
 

The XBee modem for the coordinator, routers and end device, were set up using the 

provided XBee API communication framework. The communication between the XBee modem 

and the computer were setup to a Baudrate of 9600kbps using hardware flow control on the serial 

port. The selection of this data rate has been made again without loss of generality, as the 

presented experimental results can be also be applied to higher Baudrates. In addition, the router 

devices do not require any wired communication interface, thus  requiring only a power 

connection to be provided. The parameters that have been utilized in the WSN for our test case 

are outlined in Table I. 

 

 

 

 



Table I Configuration of the utilized experimental WSN 
 

Network Characteristics  Values 

Number of Nodes (N)  5 

Coverage Area (M x M)  20 x 20 

Maximum Transmission Range (m)  40 

MAC Sub‐Layer Protocol  IEEE 802.15.4 

Routing Protocol  ZIGBEE 

Data size per Packet (B)  68 

Data Size per Packet (Including Overhead) (B)  84 

Transmission Interval (sec)  2.5 

Distance Between nodes (m)  5 

Interface Baundrate (Kbps)  9600 

Interface flow control  Hardware (CTS/RTS) 

RF Data rate (Kbps)  250 

Transmit output power (mW)  1.25 
 

The experiments were performed in the following sequence: First, the 256x256 sized image 

of Lenna of 8-bit color depth was decomposed to its Quad–Tree equivalent with a various 

decomposition factors, varying from 0.1 to 0.8 with a 0.1 discrete step and in sequel the image 

was transmitted over the network. Initially, all nodes were placed in a small area in order to avoid 

packet losses and to measure the time overhead for each QT-decomposition and transmission 

over the WSN. The effect of the decomposition factor on the quality of the original gray scale 

image of Lenna is depicted in Fig. 5. Additionally, in Fig. 6 the mean value of the experimentally 

measured overhead time elapsed from the initiation of the QTD process for an image until the 

reception of the full image at the receiver side is presented. For these measurements it should be 

noted that the calculations of the mean time value refer to sets containing 10 images of Lenna 

each and by using the same compression rate. 

In Fig. 5 the top right image is the original Lenna image while the following ones are the 

images received with an increasing decomposition factor from 0.1-0.8 (e.g. The bottom right 

image of Lenna has been under QTD with a 0.8 decomposition factor). 

 



 

Fig. 5 Decomposed image of Lenna for various QTD Factors 

As it can be observed from Fig. 6, an average time interval of approximately 145secs was 

needed for the original Lenna image to undergo QTD and be transmitted via the WSN, which 

constitutes a time delay frame, although the network was utilizing its full bandwidth (only one 

active transmission of image in the WSN). From an application standpoint, when is the need to 

receive just one snapshot of an image with high quality is exhibited, such large delays are 

acceptable. On the contrary, when there is demand for sequential images of a scene (e.g. 

surveillance applications) such delays are mandatory to be highly reduced, which in turn results 

in a corresponding decrease of the quality of the received images. For example, if the selection of 

the QTD factor was equal to 0.5 (the second image of Lenna from the left on the second line in 

Fig. 4) then the end-to-end delay (from QTD until reception) would be 13.88sec.  



 

Fig. 6 Decomposition Factor vs. Time Overhead 
 

In the case of utilizing such a QTD scheme with an appropriate decomposition factor, the 

received images will contain less blocks of valuable image data, and this is a straightforward 

consequence of the way that the Quad Tree decomposes an image. This means that, in case of a 

lossy transmission scheme, the effect of the missing packets on the quality of the received image 

will be dependant to the QTD factor. The higher the factor, the greater the effect of the missing 

image block will be. In order to improve the quality of the received images, even in the case of 

lost data blocks, our approach prevents the receiver from requesting retransmission of lost 

packets. Instead, the receiver base station performs image inpainting to indirectly retrieve the 

missing information from the received image. The execution of the fast image inpainting 

algorithm, presented in Section 3, as it is presented in what follows, consumes almost 2sec and it 



is evident that the request for retransmission of the lost data packets is outperformed in with 

respect to speed. 

As an example, consider an application where the QTD factor has been set equal to L=0.5 

(right side of Fig. 6) and again the goal is to transmit over the WSN, sequential frames of the 

original Lenna 256x256 pixels gray scale and 8–bit image. This time, the WSN nodes have been 

placed in an area of 20x20m2, where loss of data packets can occur. After the transmission of the 

QTD coded image, the lossy received image is decoded. Decoded images are presented on the 

middle portion of Fig. 7. This image has been checked for missing partitions and these missing 

blocks have been masked in red color (Fig. 7). The resulting image after the application of the 

inpainting algorithm is presented on the right side of Fig. 7. It should be also noted that for this 

experiment, the measured end-to-end delay has been 14.103sec. 

The utilized inpainting algorithm would commence the repair process using an iterative 

multi–resolution approach. For each lower level the image was down–scaled to half the size of 

the level above and the inpainting algorithm was applied to the image frame. At each level the 

algorithm iterates by progressively filling in the missing pixels of the masked region by 

iteratively applying a maximum of N steps of inpainting Eq.(2) and diffusion Eq.(5) every M 

steps until convergence is achieved. 

 

Fig. 7 The L=0.5 QT-decomposed image (left side), the masked received lossy image (middle 

portion) and the resulting repaired image(0.7 sec) 4–levels, N=12 (right side) 



 

In Fig. 8, the second Quad–Tree decomposed frame of Lenna, with a compression factor of L 

= 0:3 (left side) and the received (19.8sec) masked lossy frame (middle portion) is presented. 

Finally, the results of the inpainting algorithm are also displayed in the same figure (right side). 

 

 

Fig. 8 The L=0.3 QT-decomposed image (left side), the masked received lossy image (middle 

portion) and the resulting repaired image 4–levels(1.2 sec), N = 12 (right side) 

From the experiments above it is obvious that the image inpainting algorithm achieves to 

reconstruct the missing informationfor all selected QT–decomposition factors. Smaller 

decomposition factors result in smoother restorations of missing partitions while more complex 

decompositions result in rougher restorations. This observation was expected, as the image 

inpainting algorithm bases its operation on the information surrounding a missing partition and 

there is no capability of increasing the level of detail in the reconstructions further than the 

provided quality of the image frame. 

 

6 Conclusions 

In this article a dual scheme for compression and restoration of sequentially transmitted 

images over Wireless Sensor Networks (WSN) has been presented. The proposed novel dual 

scheme is based on: a) the Quad–Tree Decomposition that compresses the volume of the image 



data to be transmitted by clustering the image in sets of variable size and of similar type of color 

information, and b) on the fast image inpainting algorithm to restore the effect of the missing data 

packets by reconstructing its damaged or missing portions from the surrounding information. The 

overall proposed scheme has been applied in multiple experimental studies that prove the efficacy 

of the proposed algorithm. Future studies will focus on the development of an adaptive scheme 

for: a) adapting the decomposition factor based on the current traffic load (round trip latency 

time) and b) utilizing the inpainting algorithm as it has been presented in this article. 
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